Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 611(7936): 570-577, 2022 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2106425

RESUMEN

Expanding our global testing capacity is critical to preventing and containing pandemics1-9. Accordingly, accessible and adaptable automated platforms that in decentralized settings perform nucleic acid amplification tests resource-efficiently are required10-14. Pooled testing can be extremely efficient if the pooling strategy is based on local viral prevalence15-20; however, it requires automation, small sample volume handling and feedback not available in current bulky, capital-intensive liquid handling technologies21-29. Here we use a swarm of millimetre-sized magnets as mobile robotic agents ('ferrobots') for precise and robust handling of magnetized sample droplets and high-fidelity delivery of flexible workflows based on nucleic acid amplification tests to overcome these limitations. Within a palm-sized printed circuit board-based programmable platform, we demonstrated the myriad of laboratory-equivalent operations involved in pooled testing. These operations were guided by an introduced square matrix pooled testing algorithm to identify the samples from infected patients, while maximizing the testing efficiency. We applied this automated technology for the loop-mediated isothermal amplification and detection of the SARS-CoV-2 virus in clinical samples, in which the test results completely matched those obtained off-chip. This technology is easily manufacturable and distributable, and its adoption for viral testing could lead to a 10-300-fold reduction in reagent costs (depending on the viral prevalence) and three orders of magnitude reduction in instrumentation cost. Therefore, it is a promising solution to expand our testing capacity for pandemic preparedness and to reimagine the automated clinical laboratory of the future.


Asunto(s)
Automatización , Prueba de COVID-19 , Imanes , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Robótica , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virología , Prueba de COVID-19/métodos , Técnicas de Diagnóstico Molecular/economía , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/economía , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias/prevención & control , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Algoritmos , Automatización/economía , Automatización/métodos , Robótica/métodos , Indicadores y Reactivos/economía
2.
Int J Infect Dis ; 122: 514-520, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1914474

RESUMEN

OBJECTIVES: The aim of this study was to characterize SARS-CoV-2 infection patterns in Los Angeles (LA) County youth followed at our institution during the first pandemic year. DESIGN: A prospective cohort of patients aged < 25 years who tested positive for SARS-CoV-2 using reverse-transcriptase polymerase chain reaction (RT-PCR) assays between March 13, 2020, and March 31, 2021, was evaluated at a large LA County health network. Demographics, age distribution, and disease severity were analyzed. RESULTS: There were 28,088 youth aged < 25 years tested for SARS-CoV-2 using RT-PCR, with 1849 positive results identified (7%). Among the positive results, 475 of 11,922 (4%) were identified at the pandemic onset (March-September 2020) (Cohort 1) and 1374 of 16,166 (9%) between October 2020 and March 2021 (Cohort 2), P < 0.001. When disease severity was compared across cohorts, Cohort 2 had a greater proportion of asymptomatic and mild/moderate disease categories than Cohort 1 (98% vs 80%, respectively); conversely, Cohort 1 had a near-10-fold higher proportion of severe disease than Cohort 2 (17% vs 1.8%). Cohort 2 comprised younger patients with a mean age of 13.7 years vs 17.3 years in Cohort 1. Older age was associated with a higher percentage of infection, with 63% of all confirmed cases found in participants aged 19 to 25 years in Cohort 1, compared with 38% of confirmed cases in Cohort 2. Age increase was also associated with greater disease severity by linear regression modeling (P< 0.001). CONCLUSION: Coronavirus disease 2019 (COVID-19) disease severity in youth decreased over time in LA County during the first pandemic year, likely a reflection of changing demographics, with younger children infected. A higher infection rate in youth did not lead to higher disease severity over time.


Asunto(s)
COVID-19 , Pandemias , Adolescente , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Humanos , Los Angeles/epidemiología , Estudios Prospectivos , SARS-CoV-2
3.
BMC Genomics ; 23(1): 260, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1775310

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused global disruption of human health and activity. Being able to trace the early outbreak of SARS-CoV-2 within a locality can inform public health measures and provide insights to contain or prevent viral transmission. Investigation of the transmission history requires efficient sequencing methods and analytic strategies, which can be generally useful in the study of viral outbreaks. METHODS: The County of Los Angeles (hereafter, LA County) sustained a large outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To learn about the transmission history, we carried out surveillance viral genome sequencing to determine 142 viral genomes from unique patients seeking care at the University of California, Los Angeles (UCLA) Health System. 86 of these genomes were from samples collected before April 19, 2020. RESULTS: We found that the early outbreak in LA County, as in other international air travel hubs, was seeded by multiple introductions of strains from Asia and Europe. We identified a USA-specific strain, B.1.43, which was found predominantly in California and Washington State. While samples from LA County carried the ancestral B.1.43 genome, viral genomes from neighboring counties in California and from counties in Washington State carried additional mutations, suggesting a potential origin of B.1.43 in Southern California. We quantified the transmission rate of SARS-CoV-2 over time, and found evidence that the public health measures put in place in LA County to control the virus were effective at preventing transmission, but might have been undermined by the many introductions of SARS-CoV-2 into the region. CONCLUSION: Our work demonstrates that genome sequencing can be a powerful tool for investigating outbreaks and informing the public health response. Our results reinforce the critical need for the USA to have coordinated inter-state responses to the pandemic.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Brotes de Enfermedades , Genómica , Humanos , Los Angeles/epidemiología , SARS-CoV-2/genética
4.
Clin Infect Dis ; 74(2): 271-277, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1662113

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused one of the worst pandemics in recent history. Few reports have revealed that SARS-CoV-2 was spreading in the United States as early as the end of January. In this study, we aimed to determine if SARS-CoV-2 had been circulating in the Los Angeles (LA) area at a time when access to diagnostic testing for coronavirus disease 2019 (COVID-19) was severely limited. METHODS: We used a pooling strategy to look for SARS-CoV-2 in remnant respiratory samples submitted for regular respiratory pathogen testing from symptomatic patients from November 2019 to early March 2020. We then performed sequencing on the positive samples. RESULTS: We detected SARS-CoV-2 in 7 specimens from 6 patients, dating back to mid-January. The earliest positive patient, with a sample collected on January 13, 2020 had no relevant travel history but did have a sibling with similar symptoms. Sequencing of these SARS-CoV-2 genomes revealed that the virus was introduced into the LA area from both domestic and international sources as early as January. CONCLUSIONS: We present strong evidence of community spread of SARS-CoV-2 in the LA area well before widespread diagnostic testing was being performed in early 2020. These genomic data demonstrate that SARS-CoV-2 was being introduced into Los Angeles County from both international and domestic sources in January 2020.


Asunto(s)
COVID-19 , SARS-CoV-2 , Técnicas y Procedimientos Diagnósticos , Humanos , Los Angeles/epidemiología , Estudios Retrospectivos
5.
Front Pediatr ; 9: 752247, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1555865

RESUMEN

Objective: To understand which social, epidemiologic, and clinical risk factors are associated with SARS-CoV-2 infection in youth accessing care in a large, urban academic institution. Methods: We conducted a prospective cohort study with case-control analyses in youth who received testing for SARS-CoV-2 at our academic institution in Los Angeles during the first wave of the COVID-19 pandemic (March-September 2020). Results: A total of 27,976 SARS-CoV-2 assays among 11,922 youth aged 0-24 years were performed, including 475 youth with positive SARS-CoV-2 results. Positivity rate was higher among older, African American, and Hispanic/Latinx youth. Cases were more likely to be from non-English-speaking households and have safety-net insurance. Zip codes with higher proportion of Hispanic/Latinx and residents living under the poverty line were associated with increased SARS-CoV-2 cases. Youth were more likely to have positive results if tested for exposure (OR 21.5, 95% CI 14.6-32.1) or recent travel (OR 1.5, 95% CI 1.0-2.3). Students were less likely to have positive results than essential worker youth (OR 0.5, 95% CI 0.3-0.8). Patterns of symptom presentation varied significantly by age group; number of symptoms correlated significantly with age in SARS-CoV-2 cases (r = 0.030, p < 0.001). SARS-CoV-2 viral load did not vary by symptom severity, but asymptomatic youth had lower median viral load than those with symptoms (21.5 vs. 26.7, p = 0.009). Conclusions: Socioeconomic factors are important drivers of SARS-CoV-2 infection in youth. Presence of symptoms, exposure, and travel can be used to drive testing in older youth. Policies for school reopening and infection prevention should be tailored differently for elementary schools and universities.

6.
Nat Biomed Eng ; 5(7): 657-665, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1294469

RESUMEN

Frequent and widespread testing of members of the population who are asymptomatic for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the mitigation of the transmission of the virus. Despite the recent increases in testing capacity, tests based on quantitative polymerase chain reaction (qPCR) assays cannot be easily deployed at the scale required for population-wide screening. Here, we show that next-generation sequencing of pooled samples tagged with sample-specific molecular barcodes enables the testing of thousands of nasal or saliva samples for SARS-CoV-2 RNA in a single run without the need for RNA extraction. The assay, which we named SwabSeq, incorporates a synthetic RNA standard that facilitates end-point quantification and the calling of true negatives, and that reduces the requirements for automation, purification and sample-to-sample normalization. We used SwabSeq to perform 80,000 tests, with an analytical sensitivity and specificity comparable to or better than traditional qPCR tests, in less than two months with turnaround times of less than 24 h. SwabSeq could be rapidly adapted for the detection of other pathogens.


Asunto(s)
ARN Viral/genética , SARS-CoV-2/patogenicidad , Saliva/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , SARS-CoV-2/genética , Sensibilidad y Especificidad
7.
PLoS One ; 16(7): e0251342, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1290172

RESUMEN

Amperial™ is a novel assay platform that uses immobilized antigen in a conducting polymer gel followed by detection via electrochemical measurement of oxidation-reduction reaction between H2O2/Tetrametylbenzidine and peroxidase enzyme in a completed assay complex. A highly specific and sensitive assay was developed to quantify levels of IgG antibodies to SARS-CoV-2 in saliva. After establishing linearity and limit of detection we established a reference range of 5 standard deviations above the mean. There were no false positives in 667 consecutive saliva samples obtained prior to 2019. Saliva was obtained from 34 patients who had recovered from documented COVID-19 or had documented positive serologies. All of the patients with symptoms severe enough to seek medical attention had positive antibody tests and 88% overall had positive results. We obtained blinded paired saliva and plasma samples from 14 individuals. The plasma was analyzed using an EUA-FDA cleared ELISA kit and the saliva was analyzed by our Amperial™ assay. All 5 samples with negative plasma titers were negative in saliva testing. Eight of the 9 positive plasma samples were positive in saliva and 1 had borderline results. A CLIA validation was performed as a laboratory developed test in a high complexity laboratory. A quantitative non-invasive saliva based SARS-CoV-2 antibody test was developed and validated with sufficient specificity to be useful for population-based monitoring and monitoring of individuals following vaccination.


Asunto(s)
Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Inmunoglobulina G/inmunología , SARS-CoV-2/inmunología , Saliva/inmunología , Anticuerpos Antivirales/análisis , COVID-19/inmunología , COVID-19/virología , Técnicas Electroquímicas/métodos , Humanos , Inmunoglobulina G/análisis , Límite de Detección , SARS-CoV-2/aislamiento & purificación , Saliva/virología
8.
J Clin Microbiol ; 59(7): e0043121, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1276888

RESUMEN

Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be diagnosed by PCR during acute infection or later in their clinical course by detection of virus-specific antibodies. While in theory complementary, both PCR and serologic tests have practical shortcomings. A retrospective study was performed in order to further define these limitations in a clinical context and to determine how to best utilize these tests in a coherent fashion. A total of 3,075 patients underwent both PCR and serology tests at University of California, Los Angeles (UCLA), in the study period. Among these, 2,731 (89%) had no positive tests at all, 73 (2%) had a positive PCR test and only negative serology tests, 144 (5%) had a positive serology test and only negative PCR tests, and 127 (4%) had positive PCR and serology tests. Approximately half of the patients with discordant results (i.e., PCR positive and serology negative or vice versa) had mistimed tests in reference to the course of their disease. PCR-positive patients who were asymptomatic or pregnant were less likely to generate a detectable humoral immune response to SARS-CoV-2. On a quantitative level, the log number of days between symptom onset and PCR test was positively correlated with cycle threshold (CT) values. However, there was no apparent relationship between PCR CT and serologic (arbitrary units per milliliter) results.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Los Angeles , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Pruebas Serológicas
9.
J Mol Diagn ; 23(2): 159-163, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1065363

RESUMEN

The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the approval of numerous molecular diagnostic assays with various performance and technical capacities. There are limited data comparing performance among assays. We conducted a retrospective analysis of >10,000 test results among three widely used RT-PCR assays for coronavirus disease 2019 (CDC, Simplexa Direct, and TaqPath) to assess performance characteristics. We also retested remnant weakly positive specimens to assess analytical sensitivity. All assays had strong linear correlation and little bias among CT values for PCR targets. In patients with first-test negative results (n = 811), most (795, 98.0%) remained negative for all subsequent testing. Retesting of weakly positive specimens (CT > 30) showed sensitivities as follows: TaqPath (97.8%), CDC (91%), Simplexa (75.3%). Our analysis showed no performance difference among PCR targets within the same assay, suggesting a single target is sufficient for SARS-CoV-2 detection. Lower respiratory tract specimens had a higher negative predictive value (100%) than upper respiratory tract specimens (98%), highlighting the utility of testing lower respiratory tract specimens when clinically indicated. Negative predictive value did not increase on further repeated testing, providing strong evidence for discouraging unnecessary repeated testing for SARS-CoV-2.


Asunto(s)
Bioensayo , Prueba de COVID-19 , COVID-19/diagnóstico , COVID-19/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Humanos , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA